Neutrino-driven Convection in Core-collapse Supernovae: High-resolution Simulations
نویسندگان
چکیده
We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downwardtransport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased.
منابع مشابه
A new mechanism for gravitational-wave emission in core-collapse supernovae.
We present a new theory for the gravitational-wave signatures of core-collapse supernovae. Previous studies identified axisymmetric rotating core collapse, core bounce, postbounce convection, and anisotropic neutrino emission as the primary processes and phases for the radiation of gravitational waves. Our results, which are based on axisymmetric Newtonian supernova simulations, indicate that t...
متن کاملDeciphering Core Collapse Supernovae: Is Convection the Key? I. Prompt Convection
We couple two-dimensional hydrodynamics to detailed one-dimensional multigroup ux-limited diiusion neutrino transport to investigate prompt convection in core collapse supernovae. Our initial conditions, time-dependent boundary conditions, and neutrino distributions for computing neutrino heating, cooling, and deleptonization rates are obtained from one-dimensional simulations that implement mu...
متن کاملCore-Collapse Simulations of Rotating Stars
We present the results from a series of two-dimensional core-collapse simulations using a rotating progenitor star. We find that the convection in these simulations is less vigorous because a) rotation weakens the core bounce which seeds the neutrino-driven convection and b) the angular momentum profile in the rotating core stabilizes against convection. The limited convection leads to explosio...
متن کاملPrompt Convection in Core Collapse Supernovae
We investigate prompt convection in core collapse supernovae and its consequences for the late-time shock evolution and supernova outcome. We examine the evolution of the core prior to the onset of convection and nd that the negative entropy gradients imprinted on the outer core by the weakening shock, which, along with the negative lepton gradient, drive the convection, are very sensitive to (...
متن کاملToward a Standard Model of Core Collapse Supernovae
Beginning with the first numerical simulations conducted by Colgate and White[1], three decades of supernova modeling have established a basic supernova paradigm. The supernova shock wave—formed when the iron core of a massive star collapses gravitationally and rebounds as the core matter exceeds nuclear densities and becomes incompressible—stalls in the iron core as a result of enervating loss...
متن کامل